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ABSTRACT 

If k is a field, A a k-algebra, and B a k-bialgebra which acts on A, we 

study the rate of growth of A under its algebra s tructure together with the 

action of B. We then briefly place our results in the more general context 

of a vector space A on which an operad acts, and sketch an application to 

a (still open) question on finitely generated subalgebras of free associative 

algebras. 

I n t r o d u c t i o n  

Let A be a finitely generated associative unital  algebra over a field k, and U a 

finite-dimensional k-subspace which generates A and contains 1. The  classical 

theory  of growth-rates of algebras [11] looks at the dimensions of the sets 

U ~ = span { x l . . . x ~ l x l , . . . , x ~  C U} 

as n grows, and studies measures of the resulting function of n which are invariant 

under  change of the generating subspace. 
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Now suppose A is a k-algebra given with an action o f  a bialgebra B - for 

instance, an action of a group G on A by automorphisms, corresponding to the 

case B = k G  with its natural  bialgebra structure, or an action of a Lie algebra 

L byderivat ions,  in which case B is the universal enveloping algebra k[L]. Then 

given finite-dimensional subspaces U c A, V C_ B 'such that  V generates B as an 

algebra, and U generates A as an algebra with B-action, it is natural  to study 

how A grows when we start  with the subspace U and generate the whole algebra 

A by successive applications of the algebra operations, together with the actions 

of elements of V. 

In this situation, it is not obvious how best to organize the simultaneous 

"feeding in" of elements of U and of V as we measure the growth of A. We 

will introduce two ways of doing this. One of these, which leads to what I will 

call the "length" growth function, is the obvious generalization of what is done 

in the classical case; but we will see that  the other, the "depth" growth func- 

tion, gives some information that  the length growth function misses (though the 

reverse is also true). 

In the classical study of growth of algebras, "unrestrained growth" corresponds 

to the exponential growth rate. As we shall see, the same is true for our length 

growth function; but for the depth growth function, "unrestrained growth" corre- 

sponds to doubly exponential growth, i.e., to functions like 2 2n (roughly speaking, 

because a string of "depth n" can have length up to 2"). For each of our growth 

functions, we shall see that  the maximal growth rate can occur either as a result 

of unrestrained growth of A alone (for instance, if B is trivial and A is a free as- 

sociative algebra), or mainly  as a result of unrestrained growth of B (for instance 

if A is commutative,  while B is the group algebra of a free group). However, in 

Section 2, we will find that  simultaneous restrictions on A as an algebra and B 

as a bialgebra can yield restrictions on the growth of A under the action of B. 

In Section 4, we show that  our two measures of growth are not merely invariants 

of A as an algebra with action of the bialgebra B, but of A as a vector space 

with an "operad" of multilinear maps, namely, the operad of derived multilinear 

operations generated by the bilinear multiplication of A and the linear operations 

of the elements of B. In Section 5 that  observation is applied to the problem 

that  originally led me to look at these matters: the question of whether, in a 

free associative algebra k < X >, every finitely generated subalgebra is finitely 

related within the quasivariety  generated by all free associative k-algebras. The 
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role of the results of Sections 1-4 is actually to shoot down an idea that  I had 

thought might prove this statement; but perhaps they will nonetheless lead to a 

better  understanding of the problem. (The material in those last two sections is 

only sketched.) 

1. General  definit ions and results 

A field k will be assumed fixed throughout this paper. 

We begin by recalling some standard concepts [11, p.5]. 

Definition 1.1: Let • denote the set of nondecreasing sequences (d (1) , . . . ,  

d(n) , . . . )  of nonnegative real numbers, and let us define a preordering (a re- 

flexive transitive binary relation) "_~" on ~2 by writing 

(d(1) , . . . ,  d(n) , . . .  ) <_ (e (1) , . . . ,  e (n ) , . . .  ) if and only if there exists 

a positive integer r such that d(n) < e(rn) for all positive integers n. 

Then the equivalence classes of • under the relation 

d _< e and e ~ d 

will be called g r o w t h  r a t e s  (of sequences of nonnegative real numbers). The 

equivalence class of a sequence d = ( d ( 1 ) , . . . , d ( n ) , . . . )  will be denoted 

G ( ( d ( 1 ) , . . . , d ( n ) , . . . ) )  or G(d) or, most often, G(d(n)); in the last case, the 

integer-valued variable will always be named n. 

The set of growth rates will be taken to be partially ordered by defining 

G(d) _< G(e) if and only if d < e under the preordering defined above. 

By the e x p o n e n t i a l  g r o w t h  r a t e  we will mean the common value of the 

growth rates G(c n) for all c > 1, and by the double  exponent ia l  growth rate, 

the common value of the growth rates G(c d~) for all c, d > 1. 

The reader can easily verify that all functions of the form c n indeed have the 

same growth rate, and that the same is true of functions of the form c d~ . 

We now turn to the growth of an algebra A on which another algebra B acts 

linearly. We will eventually want A to satisfy some identities, and B to be a 

bialgebra acting on A by a bialgebra action, but in this section we will not need 

to make these assumptions. In the statement of the next definition, we follow the 
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usual notational convention that if U 1 and U2 are k-subspaces of a k-algebra, or 

U1 is a subspace of a k-algebra and U2 a subspace of a module over this algebra, 

then 

(1.2) UIU2 = spank {xy  [ x C U1, y C U2 }. 

Definition 1.3: Let A be a k-algebra (not necessarily associative or unital) and B 

an associative unital k-algebra, and assume that  a B-module structure compatible 

with the k-vector-space structure is given on the underlying k-vector-space of A. 

Then for any k-subspaces U C_ A and V C_ B such that 1B E V, we define 

the k-subspaces V length,n,V C A and U depth,n,V C A (n = 1, 2 , . . . )  recursively, 

taking 

and for n > 1, 

U length ' l 'V = U, 

U dep th ' l 'V  = U, 

U length'n'v V (U  length'n-l'v -~ E- {ulength,m,V~fulength . . . . .  V~  
= O<rn<nk }~, ) ) ,  

udepth,n, V = v (udepth,n-1, V -[- (udepth,n-l,V )(udepth,n-l,V ) ). 

(Note that  if A is unital and 1 A E U, the initial summands U length,~-I,v and 

U depth'n-l'y c a n  be dropped from the above definitions, since they will be con- 

tained in the terms that follow. In any case, the presence of those initial terms 

guarantees that  the above families of subspaces of A are ascending chains, as 

functions of n.) 

We shall occasionally want to speak of the growth of a k-algebra A not given 

with an additional module structure. In that situation, we define 

ulength ,  n = ulength,n, k, 

udep th ,  n = udepth,n, k, 

using the k-module structure of the k-algebra A. 

LEMMA 1.4: Let A, B,  U, V be as in the above definition. Then 

(i) For every positive integer n, one has 

U length,n,V C U depth,n,V C U length ,2~- l ,V.  
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(ii) The union over n of the chain of subspaces U length'n'V and the union over n 

of the chain of subspaces U depth'n'V a r e  both equal to the least subalgebra 

of A that contains U and is closed under the action of elements of V. 

(iii) For all positive integers m and n, 

(iv.a) I f  r > 0 and U ~ is a subspace of U length'r'V, then for all n, 

U plength,n,V ~ ulength,rn,V. 

(iv.b) I f  r > 0 and U' is a subspace ofU depth'r'V, then for all n, 

U tdepth,n,y C g depth,n+r-l,V C U depth,rn,V. 

(v) I f r  > 0 and V I is a subspace o f V  l~ngth'~" C_ B, then for all n, 

U length,~,v' c U length .... v and U a~pth,~,v' C_ U a~pth,~,v. 

Proof." Both inclusions of (i) are immediate by induction. 

The unions of the chains referred to in (ii) are clearly contained in the indicated 

subalgebra; on the other hand, these unions are closed under the multiplication of 

A and the action of V, giving equality. (In getting closure under multiplication, 

one uses the hypothesis 1B E V, and in getting closure under the action of V, 

one uses the left-hand summands in the recursive definitions of these spaces.) 

(iii) is clear, since the depth construction works by iterating a single unchanging 

operation. 

(iv.a) is proved by induction from the case n = 1, while (iv.b) is immediate from 

(iii). (The final inclusion in (iv.b) is recorded simply to make a later application 

of Definition 1.1 easier.) 

The verification of (v) is again by induction: in going from n to n + 1 in the 

first assertion, we apply the recursive definition of U length'rn+l'V, followed by 

r - 1 applications of the observation U length'm+l'V ~ VU length'm'V to show that  

U l~gth'r(~+l)'v contains all summands in the definition of Utength'~+l'V~eng*h'~; 

the depth case works the same way. | 

Letting "dim" denote "dimension as a k-vector-space", we see that  parts (iv.a), 

(iv.b) and (v) of the above Lemma immediately give 
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COROLLARY 1.5: 

(i) Suppose A, B, U, V are as in Definition 1.3, and U and V are finite- 

dimensional. Let U' be any finite-dimensional subspace of the least sub- 

algebra of A that contains U and is closed under the action of V, and V' 

any finite-dimensional subspace of the subalgebra of B generated by V. 

Then (for ~ as defined in Definition 1.1), we have 

! i G(dim(U l~ngth,~,Y )) < 6(dim(Ulength,n,Y)), 

6(dim(U'depth,~,Y')) < 6(dim(Vd~pth'~'Y)). 

Hence, 

(ii) I f  B is finitely generated as a k-algebra, and A is finitely generated as a 

k-algebra with action of B, then, letting U and V be finite-dimensional 

k-subspaces which generate A and B in these senses, the growth rates 

6(dim(Ulength'n'V)) and 6(dim(Udepth"~'V)) are invariants of the 

pair ( A, B ). 1 

Hence we may make 

Definition 1.6: Let B be a finitely generated associative unital k-algebra, and 

A a not necessarily associative k-algebra given with a B-module structure com- 

patible with its k-vector-space structure, such that A is finitely generated with 

respect to the combined k-algebra and B-module structures. Then we shall define 

61~ngth(A, B) = ~(dim(Ul~ngth'n'V)), 

~dePth(A, B) = ~(dim(Odepth'n'V ) ), 

where U and V are any finite-dimensional k-subspaces which generate A and B 

in these senses. 

We may also write 6 length (A) and •depth (A) for the corresponding growth-rates 

of a k-algebra A without additional structure (cf. last paragraph of Definition 

1.3). 

LEMMA 1.7: For A, B, U, V as above, ~length(A, B) is at most exponential (i.e., 

is < the exponential growth rate, defined in the last paragraph of Definition 1.1) 

and ~depth(A, B) is at most doubly exponential (i.e., is <_ the double exponential 

growth rate). 
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Sketch of Proof: Choose bases of U and V, and let us write elements of 

V length,n,V, respectively U depth'n,V, as linear combinations of expressions in ele- 

ments of these bases. Each such expression can be represented by a string built 

from an alphabet  of symbols for elements of these bases, and parentheses. If  c is 

the number of symbols in the alphabet, then the number of such strings of length 

_< r (counting punctuation) is bounded by (c + 1) ~ (the "+1" corresponding to 

the adjunction to our alphabet of one more symbol, "whitespace", to pad strings 

of smaller length to length r). 

Now it is easy to verify by induction that  U length'n'V is spanned by a set of 

elements represented by strings whose lengths have a bound linear in n, giving an 

exponential bound for the number of such strings, and that  the lengths of strings 

similarly denoting a set of elements spanning U depth'n'V have an exponential 

bound, giving a doubly exponential bound for their number. | 

Let us note some cases where these upper bounds are achieved. 

Example 1.8: Let A be a free associative unital k-algebra on two generators, 

k < x, y >, and B the k-algebra k, and let us make A a B-module via its k-vector- 

space structure. Then if we take for U the span of {x,y}, and V = B, we see 

that  g length'n'V contains all monomials in x and y of length n, of which there 

are 2 n, so its dimension grows exponentially, and that  U depth'n'V contains all 
2n-1 

monomials in x and y of length 2 n-  1 of which there are 2 , so its dimension 

grows doubly exponentially. 

The above example shows that  the bounds of Lemma 1.7 can be achieved 

"without any help from B".  The next example will show that  we can also get such 

growth with B "doing most of the work", namely, with an A that  is commutative,  

and hence intrinsically "slow growing" ([11, Corollary 7.5]). 

Example 1.9: This t ime let B be the free algebra k < x, y >, and for A let 

us take the commutat ive polynomial ring on a set of indeterminates ts, where 

S runs over < x, y >, the free semigroup-with-1 (monoid) on {x, y}. If we let 

this semigroup act on the above set of indeterminates by defining S tT= tST for 

S, T C< x, y >, this induces an action of < x, y > by k-algebra endomorphisms on 

A, which we extend k-linearly to get a B-module structure on A. (In fact, that  

module structure is a bialgebra action, under the standard bialgebra structure of 

the semigroup algebra B, but we are not considering bialgebra structures in this 

section.) 
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Let us now take for U the span of the singleton {tl} (where 1 is the identity 

element of < x, y >, the empty string of x 's  and y's), and for V the span of 

{1, x, y} C_ B. We shall construct a set of 2 2" linearly independent elements in 

U depth'n+3'V, Namely, to each string of 2 '~ x 's  and y's, 

(1.10) z l , . . . , z2~  ( z i • { x , y } ) ,  

we shall associate a certain monomial in the indeterminates t s  which lies in 

V d e p t h , n + 3 , y ,  in such a way that  distinct strings yield distinct monomials. 

Since tl E U = udepth'l'V~ we have t ~ , t y  E U depth '2 'V.  (Here we have used the 

action of V, but not the multiplication of A.) Hence given (1.10) we can form 

the sequence of elements 

t z l  , tz2 , • • • ,  t z 2 . _  ~ , t z 2 .  E U depth'2'V. 

Moving up to depth 3, let us once again use the action of V but  not the multi- 

plication of A, this t ime applying x to all elements in o d d  positions in the above 

sequence, and y to all elements in e v e n  positions, getting 

t x z a  , t y z 2  , • • • ,  t x z 2 ~ _ l  , t y z 2 ~  C U depth'3'V. 

At the next step, our construction settles into the form of all subsequent steps: 

Assuming n > 0, we turn our sequence of 2 n elements of depth 3 into a sequence 

of 2 '~-1 elements of depth 4, by multiplying them together in pairs, and applying 

x to those products appearing in odd positions in the resulting sequence, and y 

to those appearing in even positions: 

t x x z l  t x y z 2  , t y x z 3 t y y z 4  , • • • ,  t y x z ~  - 1  t y y z 2 ~  C U depth'4'V . 

We then pass in the same way to a sequence of 2 n-2 elements of depth 5, and 

so on, until we arrive at a single monomial in U depth'n+3'V . NOW I claim that  

despite the commutat ivi ty  of A, we can recover from this monomial the original 

sequence Z l , . . . ,  z2~. The point is that  if we look at the subscript on the i th of 

the 2 n factors in our description of this monomial, a string of n + 2 x 's  and y's, 

the middle n terms in this string "encode" i, while the last term of the string is 

zl, so this monomial indeed determines the map i ~ z~. 

Thus, for n _> 3, dim(U depth'n'v) > 2 2~-~. This shows t h a t  ~depth(A, B)  is 

the doubly exponential growth rate. Moreover, combined with the right-hand 
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inclusion of Lemma 1.4(i), the same inequality gives dim(U length'2n-l'V) ~ 22~-3 , 

from which one can deduce that  6length(A, B) is the exponential growth rate. 

In the above two examples, both our measures of growth assumed their maxi- 

mum values. The next example will show, however, that  6d~pth can detect some 

restrictions on growth that  ~length misses. 

Example 1.11: Let A, B, U, V be as in the preceding example, and let A' be 

the factor-ring obtained from A by imposing the relations t~ : t s  for all S, and 

tstT = 0 for S ¢ T. By abuse of notation, we will use the same symbols for 

elements of A and their images in A'. (A' may be identified with the algebra of 

k-valued functions on < x, y > spanned by k and the functions of finite support,  

with each ts  corresponding to the function equal to 1 at S and 0 elsewhere.) The 

action of B on A clearly induces an action on A'; we will write U' for the image 

of the space U in A'. 

Since in A', multiplication of monomials never yields new monomials, we see 

tha t  on spaces spanned by monomials, the operators ( )length,n,V and ( )depth,n,V 
are both simply the operation of applying V n - 1 times. From this it is easy to 

verify that  dim(U'l~ngth'n'Y) = dim(U'd~pth'n'V) = 2 ~ _ 1. So ~length (A t, B) and 

~depth (A I, B) are both the exponential growth rate, which is the greatest possible 

growth rate for ~length, but not for ~depth. 
The difference between the "length" and "depth" constructions tha t  this ex- 

ample brings out is that  U length'n'V is spanned by products of < n elements of 

U that  have each been acted on by n - 1 elements of V, so elements of U and of 

V are being brought in at essentially the same rate, while U depth'n'V is spanned 

by products of < 2 ~-1 elements of U, on each of which only n - 1 elements of 

V have acted, so V is having relatively less effect than U. (Nevertheless, each of 

the terms that  span U depth'n'y involves essentially the same number of choices 

of elements of V as of elements of U; the difference is that  only a small fraction 

of these elements act on each element of U.) 

2. B ia lgebra  act ions  

Recall ([13], [17]) that a k-bialgebra means a k-algebra B which has, in addition, 

a structure of k-coalgebra, that is, a k-linear map 

A:B---* B ® k B  
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satisfying certain compatibili ty conditions which we will not record here. An 

action of B as a bialgebra on a k-algebra A means a structure of B-module 

(as usual, respecting the k-vector-space structure) such that  for every y E B, if 

A(y) = E~ y~ ® y~', then the action of y on A satisfies the identity 

t x II x (2.1) y(xlx2) = E y e (  1)Y~ ( 2 )  (xl ,x2 C A). 
i 

A familiar class of examples are group rings B = kG, which become bialgebras 

on setting A(g) = g ® g for all g E G. In this case, (2.1) says that  the action of 

each element of g is a k-algebra endomorphism of A (hence, as it is invertible, a k- 

algebra automorphism).  As a result, a bialgebra action of kG on A is equivalent to 

an action of the group G on A by k-algebra automorphisms. Similarly, if L is a Lie 

algebra over k, then its universal enveloping algebra kiLl has a comultiplication 

under which A(y) = y ® 1 + 1 ® y for all y E L, and an action of this bialgebra 

on A is equivalent to an action of L on A by derivations. (For the general theory 

of actions of bialgebras on algebras, see [13]; for a thumbnail introduction to the 

concept, see [1]. An algebra A given with an action of a bialgebra B in the above 

sense is often called a "B-module algebra", but we shall not use that  term here, 

to avoid confusion with the more general situation of the preceding section.) 

Let us make 

CONVENTION 2.2: All bialgebras will here be assumed to have underlying k- 

algebra structure that is associative and unital. (Coassociativity of the coalgebra 

structure and other additional conditions will be specified when required. As 

usual, algebras other than bialgebras will not be assumed associative or unital 

unless this is specified.) 

We recall that  a v a r i e t y  of algebras means a class of algebras defined by a set 

of identities. 

LEMMA 2.3: Let A be a k-algebra belonging to a variety A of (unital or nonuni- 

tal, possibly nonassociative) k-algebras, and B a k-bialgebra acting as a bialgebra 

on n .  

For every positive integer r, let FA(r) denote the free algebra in A on r 

generators, and U(r) C_ FA(r) the r-dimensional subspace spanned by these 

generators. For each r and n, let 

f (r ,  n) = dim(U(r)d~pth'~). 
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Then for any finite-dimensional subspace U C_ A, any finite-dimensional sub- 

coalgebra V C_ B containing 1B, and any n > 1, we have 

(2.4) dim(U depth''~'v) < f(dim(vlength'n-1) • dim(U), n). 

Proo£" The assumption that V is a subcoalgebra of B means that when (2.1) is 

applied with y E V, the terms y~ and y~' on the right can also be taken to lie in 

V; hence for any subspaces U1, U2 C_ A, 

(2.5) V(U, U2) C_ (VU1)(VU~). 

From this it easily follows that 

(2.6) V(U depth,~) C (VU) depth,~, 

and from this, an easy induction using Lemma 1.4(iii) shows that 

(2.7) U depth,",V C_ ((vlength'"-l)U) depth'n. 

Since (vlength'~-l)U is a linear image of V length'n-1 @k U, its dimension is _< 

dim(V length,~-l) • dim(U). Mapping the free algebra in A on dim(V length'n-I) • 

dim(U) indeterminates onto this subspace of A, and recalling the definition of 

f (r ,  n), we see that the dinaension of the right-hand side of (2.7) is bounded by 

f (d im(V lengthm-1) • dim(U), n), giving the desired inequality. | 

To apply this in a concrete case, let A be the variety of commutative associative 

unital k-algebras. Thus f (r ,  n) is the number of commutative monomials of 

degree _< 2 '~ in r indeterminates. This is less than or equal to the number of 

monomials in r indeterminates in which each indeterminate has exponent < 2 '~, 

which is (2n) " = 2 ~', allowing us to prove 

THEOREM 2.8: Let B be a coassociative bialgebra which is finitely generated as 

a k-algebra, and let A be an associative commutative unital k-algebra on which B 

acts as a bialgebra, and which is finitely generated as a k-algebra with B-action. 

Let olength(B) = G(d(n)). Then 

Ga°Pth(A, B) _< 6(2"d(")). 

In particular, if  the length growth rate orB as an algebra is less than exponential, 

the depth growth rate of A as an algebra with B-action is less than doubly 

exponential. 

Proo~ Because B is coassociative, it is locally finite-dimensional as a coal- 

gebra ([17, Corollary 2.2.2]), so letting Vo be any finite-dimensional subspace 
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generating B as an algebra and containing 1B, and V the subcoalgebra that  

it generates, V will also be a finite-dimensional generating subspace; hence 
~length(B ) -- ~(dim(vlength,n)). 

Now given sequences d(n) and e(n) such that G(d(n)) = G(e(n)), it is easily 

verified that  G(nd(n)) = G(ne(n)), and hence that G(2 ~d(n)) = U(2~¢(~)). This 

means that  it will suffice to prove our theorem with the arbitrary representative 

d(n) of the equivalence class 6'~ngth(B) replaced by any other representative 

thereof; in particular, by the sequence dim(Vl~gth,~). 

Now let U be a finite-dimensional subspace that generates A as a k-algebra 

with B-action. Then (2.4), combined with the above observation that for A the 

variety of commutative associative k-algebras, f(r, n) _< 2 nr, tells us that  

dim(U depth,n,V) ~ 2n'dim( Vl""*t~ . . . .  1).dim(U)" 

When we pass to growth rates, the linear factor n at the beginning of the exponent 

can "absorb" the constant factor dim(U) at the end, since ~(n dim(U)) = G(n), 

while the n -  1 can clearly be replaced by n. This gives us the desired bound. | 

We could have made similar estimates for Glength(A, B), but these would not 

have been very useful, as shown by 

Example 2.9: Let B = k[x], and let us regard this as the s e m i g r o u p  a l g e b r a  

of the free semigroup on one generator x, with its usual bialgebra structure, so 

that  when B acts as a bialgebra on an algebra A, x acts by an endomorphism of 

A. Let A be the polynomial ring in indeterminates to, tl, t2, . .  • and let B act so 

that  x~tj = ti+j. (Thus, the difference between this and Example 1.9 is just that  

we are now using a free semigroup on one generator instead of two.) 

Let U be spanned by {to}, and V by {1, x}. I claim that we can find 2 n linearly 

independent monomials in U length'~+l'v. Indeed, given e (1 ) , . . . ,  e(n) 6 {0, 1}, 

consider the element 

x~(1)(to(x ~(2) (to-.-(x~(~-l)(tox~(~)to)).- .  ))) E U length'n+l'V. 

This equals 

t~(1)tE(1)+~(2) • • • tE(1)+...+~(~). 

The indeterminates in the above monomial are arranged in ascending order of 

their subscripts, hence this sequence of subscripts is uniquely determined by the 
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monomial. From the sequence of subscripts we can clearly recover the sequence 

~(1) , . . . ,  c(n), hence the 2" possible choices of that sequence yield distinct mono- 

mials. 

Thus, with B having the lowest possible growth rate among finitely generated 

algebras that  are not finite-dimensional ([11, Proposition 1.4]), and (assuming 

k is infinite) A belonging to the smallest nontrivial variety of unital k-algebras, 

~length(A, B) can still be the largest possible growth rate. (If k is a finite field, 

the variety of commutative associative k-algebras does have proper subvarieties; 

for instance, when k = Z2, the variety of Boolean rings. But the above example 

can be adapted even to these varieties, by letting e be {1, 2}-valued rather than 

{0, 1 }-valued, and using the fact that these varieties satisfy no identities in which 

each indeterminate has exponent everywhere <_ 1.) 

However, the next Theorem will show that if we put restrictions not only on 

the growth rate of B as an algebra, but also on its coalgebra structure, we can 

get a nontrivial bound on ~length(A, B); though this bound (which we will see is 

best possible) is still surprisingly high. 

The proof of the Theorem uses a result from the theory of partitions of n- 

tuples of nonnegative integers, obtained by analytic methods in [15]. However, in 

addition to citing that reference, I will include below a self-contained argument 

that  yields a slightly weaker bound, with G(n ~'/<~+1)) in place of G(2n"/(~+l)). (To 

see that  this is close to the latter bound, note that it implies the bound G(2 n~) 

for all c strictly greater than r / ( r  + 1).) 

THEOREM 2.10: Let L be a Lie algebra over k, with 0 < dim(L) = r < oo; 

let B = k[L] be its universal enveloping algebra, with the standard bialgebra 

structure, and let A be a commutative associative k-algebra on which B acts as 

a bialgebra (equivalently, on whi& the Lie algebra L acts by derivations), which 

is finitely generated as a k-algebra with B-action. Then 

Let us take 

(2.11) 

Proof: 

~length(A, U) < ~(2n~/(~+i)). 

V = k +  L c_ k[L]. 

We recall that  for y E L we have A(y) = y ® 1 + 1 (3 y. From this we see that  for 

subspaces U1, U2 C_ A, 

v(u u2) c + 
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(contrast (2.5)). I t  follows that  for U C_ A and n > 0, U length'n'V is a sum of 

products 

(vp(m)u) 

satisfying not only the condition 

(2.12) m _< n, 

but also 

(2.13) p(1) +p(2 )  + . . .  + p ( m )  < n. 

Let us take a k-basis X for U and a k-basis Y = Y0 U {1} for V, where ]So is a 

basis for L. Then any member of VP(i)U is a linear combination of expressions 

of the form Yl"" .yp(i)x (yj E Y , x  E X ) .  Now if we put any total  ordering on 

the basis Yo, then by the Poincar~-Birkhoff-Witt  Theorem (the easy direction 

thereof), we can express any product Y l " " Y p  (Yi E Y )  as a linear combination 

of products of elements of Yo, in each of which the factors occur in monotone 

nondecreasing order with respect to our ordering, and the number of factors is 

still < p. It  follows that  U length'n'V is spanned by products 

(2.14) (Yl,l""Yl,p(1)Xl) "'" (Ym,1" " " Ym,p(7~)Xm) 

(Yl,j C Y0, xi E X)  subject to (2.12), (2.13), and the condition that  each sequence 

Yi,1,.-., Yi,p(i) is monotone nondecreasing. Recall that  A is commutative,  so that  

the order of the m factors in (2.14) is irrelevant. To complete the proof of (2.11) 

it will suffice to show that  as a function of n, the number of distinct products 

(2.14), subject to these conditions, has growth _< G(2 n~/(~+l)). 

Let us first note that  (2.14) can be written as a product, over x E X,  of the 

subproducts formed of those terms (Yi,i" • • yi,p(i)xi) with xl = x. Each of those 

subproducts still satisfies (2.12) and (2.13), so if we can show that  for each x, 

the growth rate of the number of such products (2.14) in which all x~ equal x is 

b ~'~2 n~/(~+l) ~ bounded y y(  ), then by taking the product over X,  we will get the bound 

G(2 c~ra(X)n~/(~+l)) for the number of products (2.14) without that  restriction. But  

the factor n r/(r+l) in the exponent can "absorb" the constant factor card(X) 

(since for any c~ > 0 and any real number c, one has G(cn" )  = G(n~)), so this 

will yield the desired estimate. 
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It  is at this point that  one can either use a self-contained argument leading to 

the weaker bound 

(2.15) 

or cite a result in the literature from which the precise bound ~(2 ~/(~+1)) can be 

deduced. I shall first give the former argument, then the latter. 

EXPLICIT ARGUMENT LEADING TO THE BOUND (2.15). To count expressions 

(2.14) in which all x~ have a given value x, let us again factor each such expression, 

this t ime into 

(2.16) the product of those terms of (2.14) with p(i) < n 1/(~+1) 

times 

(2.17) the product of those terms of (2.14) with p(i) >_ n 1/(~+D. 

As above, it will suffice to show that  each of these factors has growth rate bounded 

by (2.15). Roughly, this will hold because, though there may be a large number 

of factors (Yi,l""Y~,p(0xi) in (2.16), each is short, so they are chosen from a 

relatively small set of possibilities; while though there are a large number of 

possibilities for each factor in (2.17), there are relatively few such factors, in view 

of (2.13). 

Let us begin by estimating the number of possibilities for each factor 

(Y~,l""Y~,p(~)x~) of (2.16) or (2.17). We use the general observation that  for 

any d, the number of distinct products Yl • • • Yp such that  p < d and such that  

the sequence of y 's  is nondecreasing under our ordering on Yo is at most d ~, since 

such a product is determined by the exponents on the r elements y E ]I0, and 

each of these exponents is < d. Thus, each factor in the product (2.16) is chosen 

from among < (nl/(~+1)) r = n ~/(~+1) possibilities, while in (2.17), where we can 

merely say, on the basis of (2.13), that  each p(i) is < n, the number of choices 

for each factor is < n~; in fact, < n ~, since the case p(i) = 0 is excluded. 

In estimating the number of distinct products  (2.16), we use the same principle 

again: (2.12) says such a product has <_ n terms, we have seen that  each te rm is 

chosen from among <__ n r/(r+l) possibilities; the product depends only on the total  

exponent of each factor, so the number of products is bounded by (n + 1) ~/(~+~), 

which has the same growth rate as n ~/(~+1), as required. 
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In the case of (2.17), we see from (2.13) that  any possible value for this product 

will have < n / n  1/(r+1) = n ~/(r+l) factors, which is small compared with what 

we know about  the number of choices for each factor, namely that  it is < n ~. 

In this situation, it is not to our advantage to collect multiple occurrences, or 

even to use the commutat ivi ty  of A; we simply throw in factors "1" to bring the 

number of factors up to precisely the greatest integer in n ~/(r+l), note that  in 

each position in the resulting product there are at most n ~ possibilities (we had 

< n ~ before we threw in the possibility "1"), and conclude that  the total  number 

of possibilities for such products is bounded by (n~) ~/(~+1) = n r n ~ / ( ~ + l ) .  Here 

the n ~/(~+1) in the exponent can absorb the constant factor r, giving the desired 

bound 6(n'~/(~+1)). 

We now give the alternative completion of our proof. 

ARGUMENT BY REFERENCE TO THE LITERATURE. Let N denote the addi- 

tive semigroup of" nonnegative integers. Given any product (2.14) subject to 

(2.12), (2.13), and the conditions that  each sequence Y~,I,-.., Y~,p(0 be monotone 

nondecreasing and that  all x~ have a given value x, we may associate to each 

factor (Y~,I • "" y¢,p(~)x~) the element of N ~ whose components are the exponents 

appearing on the r members of Y0 in this expression, and thus associate to the 

whole product (2.14) the "family" (set with multiplicity) of these elements of 

N ~. Note that  by (2.12), this family has < n occurrences of the zero element 

( 0 , . . . ,  0) E N~; hence if we drop zero elements, the resulting map from products 

(2.14) to families of elements of N ~ - { (0 , . . . ,  0)} is at most (n + 1)-to-one. 

Now by (2.13), the family of elements of N ~ - {(0 . . . .  ,0)} that  we get from 

each product  (2.14) has the property that  summing its elements gives a member  

of N r whose components sum to < n. The set of such families is clearly contained 

in the set of families of elements of N ~ - { (0 , . . . ,  0)} with the property that  each 

component of the sum of the family is < n. I claim, further, that  this last set 

can be mapped  injectively into the set of families with the property that  each 

component of the sum of the family is precisely 2n. Indeed, there is a unique 

way to adjoin to such a family a single additional element of N ~ - { (0 , . . . ,  0)} 

so as to get this sum, and the original family can be recovered from the enlarged 

family by deleting the unique element having components > n. 

Now families of this sort are known as partitions of the element (2n . . . .  ,2n) E 

N ~ - { (0 , . . . ,  0)}, and the asymptotics of the number of such partitions is stud- 

ied in [15]. In particular, if in the second display on p. 25 of [15] we set r = 



Vol. 96, 1 9 9 6  GROWTH OF ALGEBRAS WITH BIALGEBRA ACTION 79 

1 (which in the notation of [15] specifies "partitions into vectors which may 

have zero entries, and such that  repeated summands are allowed"), and put 

( 2 n , . . . ,  2n) for ( h i , . . . ,  nj), the resulting formula says that  the initial te rm in 

the asymptot ic  expansion of the logarithm of the number of such partit ions is 

(r + 1)(Tlo(2n)~) 1/(~+1). (Having substituted the value 1 for the r of [15], I am 

now giving r the sense it has in the present discussion.) Here T10 is a constant 

(because its second subscript is 0; for its value, see [15, (2.14) p. 21]). Hence 

the logarithm of the number of partitions is approximated by a constant times 

(n~) 1/(~+1) = n~/(~+l); so the number of partitions grows as the exponential of 

tha t  expression. W.e have mapped the set of products (2.14) into the set of such 

partit ions in a way that  is at most (n + 1)-to-one; but a factor n + 1 may be 

absorbed by our growth-rate function. This completes the proof of (2.11). 

I am indebted to George Andrews for referring me to [15]. | 

The next example shows that  the above result is sharp. The idea is to construct 

an A such that  the monomials (2.14) are linearly independent. 

Example 2.18: Given any finite-dimensional Lie algebra L, let B = k[L] as in the 

preceding Theorem, and let A be the symmetric algebra on the underlying vector 

space of B. For each y C B, we shall write ty for the corresponding element of the 

canonical generating subspace of A. (Thus, if we take any basis S of B = k[L], 

we can describe A as the polynomial ring on {tyly ~ S}.) For each y E L, 

the linear map ty, ~-~ tyy, of this generating subspace into itself can be extended 

uniquely to a derivation of A, by general properties of derivations on polynomial 

rings, and it is easy to verify that  this family of derivations constitutes an action 

of the Lie algebra L on A, equivalently, a bialgebra action of B on A. (In fact, 

it is not hard to see that  in the class of commutat ive associative k-algebras with 

action of L by derivations, equivalently, with bialgebra action of B, our A is the 

free algebra on the one generator tl.) 

Now let V = k + L C_ B, and let U be the subspace of A spanned by tl .  We 

shall sketch, very briefly this time, how for each positive integer n which is an 

(r + 1)st power, one can construct in U length ..... v ,  a linearly independent family 

of cardinality 2 n'/( '+l).  

As in the proof of the preceding Theorem, let Y0 be a k-basis of L (hence 

of cardinality r),  let us order Y0, and let us consider products Yl"" 'Yp of el- 

ements of Yo such that  the sequence of factors is nondecreasing under our or- 
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dering. The number of such products in which each member  of Y0 appears 

< n 1/(~+1) times is (nl/(~+1)) ~ = n~/(~+l); moreover, since each of these prod- 

ucts has length < rn 1/(~+1), the corresponding indeterminate ty l . . . y  p E A lies in 

U length,n',V, where n '  = rn 1/(~+1). We now let T C_ U length'n''V be the set of 

these n ~/&+l) algebraically independent elements, and consider all products of 

subsets of T. There are 2 n~/(~+l) such products; since each of these has at most  

n r/(~+l) factors, it lies in U length'n'''V, where n" = (rnl/(~+l))(n ~/(~+1)) ~ rn, 

as claimed. When we pass to growth rates, the factor r can be ignored (by the 

equivalence relation used in the definition of growth rate), while the fact tha t  

our est imate has only been made for values of n that  are (r + 1)st powers causes 

no difficulty, because successive integers of that  form have ratios which approach 

1, and which are therefore, in particular, bounded above. We conclude tha t  

G length (A, B) >>_ G(-2 n~/(~+l)), complementing the estimate of Theorem 2.10. 

Let us consider next what happens if B "stops growing" altogether. 

PROPOSITION 2.19: Let B be any bialgebra that  is finite-dimensional as a k- 

vector-space, and A a k-algebra (not necessarily associative) on which B acts as 

a bialgebra, and which is finitely generated as a k-algebra with this B-action. 

Then A is in fact finitely generated as a k-algebra, and 

6length (A, B) = 61~ngth (A), 

~depth(A, B )  : ~depth(A).  

Moreover, i rA  is associative, and if  we w r i t e  ~length(A) ---- G(d(n) ), then 

~depth(A ) : ~ (d (2n) ) .  

Proof: Let U0 be a finite-dimensional subspace of A which generates it as an 

algebra with B-action, and let V = B. Then taking U = VUo, we see that  U will 

again be a finite-dimensional subspace generating A as an algebra with B-action, 

and moreover, it will be invariant under the action of V. From this and (2.1) we 

can see that  the definition of V length'n'V reduces to that  of U length,~ and similarly 

for U depth'n'V. This gives the first set of assertions of our Proposition. 

If  A is associative, so that  we can drop parentheses, we see that  U depth'n is just 

the span of all products of strings of <_ 2 ~-1 elements of U, which is the same as 

U length,2~-I , from which the final formula follows. | 

This formula shows that  in the case of associative algebras without bialgebra 

action, the depth growth rate provides no information not given by the length 
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growth rate. However, the formula and this conclusion fail for nonassociative A, 

as shown by 

Example 2.20: Let A be the variety of nonunital nonassociative k-algebras de- 

fined by the identity 

( u v ) w  = o. 

When we apply the recursive step in the definitions of U |ength'n and U depth'n to 

algebras in A, we see that  this reduces to U L~ngth'~ = U |ength 'n-1  -~-U(U length'n-I) 
and U depth~n = V depth 'n -1  ~- U(U depth'n-i) respectively. Hence these two chains 

of subspaces coincide, and we see that  the n th  term of each is the sum of all 

right-nested products U(U(... (UU)...)) with _< n U's. 

Thus, for any finitely generated algebra A c A, we get ~depth(A) = ~length(A), 

which, if A is infinite-dimensional, is strictly smaller than the expression for 

~depth(A) in the final statement of the above Proposition. For instance, if A is 

the free algebra in A on one generator x, then for U the space spanned by this 

generator we have U length'n ----- U depth'n =- rt, and if A is the free algebra on two 

generators and U the space spanned by these, U length'n = g depth'n = 2 n+l -- 2. 

Turning back for a moment  to Theorem 2.8, let us note that  although it assumes 

no conditions on the coalgebra structure of B, it becomes false if we drop the 

assumption that  B have such a structure with respect to which its action on A 

is an action as a bialgebra (i.e., satisfies (2.1)): 

Example 2.21: Let A be the (commutative associative) polynomial algebra 

k[tl,t2,...], let B be the 2-dimensional algebra k[xlx 2 = x], and make A a 

B-module by letting x fix all monomials of degree < 1, and letting it take each 

monomial  s of degree > 1 to the indeterminate tl(s), where f(s) is the integer 

whose binary expansion has a 1 in the nth  position from the right (the position 

with value 2 n - l )  if and only if some indeterminate appears in s with exponent 

exactly n. This operation is idempotent, so it indeed makes A a B-module. Let 

U C A be the span. of {1, tl}, and let V = B. We will sketch a proof that  we 

can find 22~-1 distinct monomials w i t h i n  U depth'n''V, where n ~ is bounded by a 

linear function of n, hence t h a t  ~depth(A, B )  is doubly exponential. 

First, in essentially log 2 n iterations of the depth construction, using onty mul- 

tiplications and not the operator x E V, we can get the first n powers of tl .  Hence, 

by applying x at the next step, we get the indeterminates t2, t 2 2 , . . . ,  t2~-1. Let 

us now form all monomials in tl ,  t2, t22 , . . . ,  t2n-~ having the property tha t  each 
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t2~ occurs either with exponent i + 1 or with exponent 0. The largest degree 

of such a monomial, 1 + 2 + . . .  + n, is on the order of n 2, so this takes about  

log 2 n 2 = 2 log 2 n iterations of the depth construction. Applying x for the second 

and last time, we get from these monomials all indeterminates tN with N < 2 n. 

Now in n iterations of the depth construction, again using only multiplication, 

we can form all monomials of total degree < 2 ~ in these 2 ~ - 1 indeterminates, 

in particular, all 22~-1 monomials which are products of a subset of this set of 

indeterminates, as claimed. 

Thus, though B has trivial growth, and A is commutative, ~depth(A, B) is 

doubly exponential. 

It  is interesting that  by using an action of B that  was not a bialgebra action, 

we have not only gotten much faster growth than can occur in the bialgebra 

action case; we were able to do so with only two applications of the action of 

V. In contrast, if B is a coassociative bialgebra acting as a bialgebra on A, it 

is not hard to show (from (2.6) and the corresponding statement for the length 

growth rate) that  inserting into the definition of 6 length (A) or of ~depth (A) a fixed 

number of occurrences of V cannot increase this growth rate. 

For the final topic of this section, recall ([13, Chapter 4], [17, Chapter  VIII) 

that  when B is a coassociative bialgebra with a bialgebra action on an associative 

unital algebra A, one can construct the smash product  A # B ,  a certain associative 

unital k-algebra generated by embedded copies of the algebras A and B, such 

that,  if we write "." for the multiplication of this algebra, to avoid confusion 

with the notation for the action of B on A, the linear map A ®k B --+ A=/#B 

taking x ® y to x • y is an isomorphism of vector spaces. To finish specifying the 

multiplication of A # B ,  I need to give a formula for y - x (x E A, y E B). To do 

this, let A(y) = Ei y~ ® y~' (cf. (2.1)); then the formula is 

(2.22) y . x = E~ y~(x) . y~'. 

The next Proposition studies the growth of this algebra A # B  and its sub- 

algebras in terms of the growths of B, and of A under the action of B. In 

stating points (ii) and (iii), we use "multiplication" of growth rates, defined by 

G(d(n))G(e(n) )  = G(d(n)e(n)) .  In point (iii) and its proof, we assume familiarity 

with the definition of Hopf algebras, and some of their properties. 

PROPOSITION 2.23: Let  B be a coassociative bialgebra, and A an associative 

unital k-algebra on which B acts as a bialgebra. Then  
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(i) I f U  is a subspace of A, and V a subcoalgebra o r b  containing 1B, then in 

A # B  one has 

( U - V )  length'n ~ ( u ] e n g t h ' n + l ' g )  " (vlength'n). 

(ii) I f  B is finitely generated as a k-algebra, and A is finitely generated as a k- 

algebra with B-action, then every finitely generated subalgebra C C_ A # B  

satisfies 
6length(c) ~ 6length(A, B)61ength(B). 

(iii) Under the hypotheses of (ii), if  B is a Hopf algebra, then A~CB is itself 

finitely generated as a k-algebra, and we have 

G t~ngth ( A # B )  = ~|ength (A, B)~ length (B). 

Sketch of Proo£" It is easy to deduce from (2.22) that if U1, U2 are subspaces of 

A, and V1, V2 subcoalgebras of B, then in A # B  we have 

(2.24) (u1. v1). (u2. v2) c (ul (v iu2))  . (viy:) .  

Also, since A # B  is associative, the sum in the recursive step of the definition of 

(U.V)  length'n can be replaced by its m = 1 term; i.e., one can nest parentheses on 

the right. Applying (2.24) repeatedly to these nested products (but resisting the 

temptation to apply (2.1)), we easily get (i). This implies (ii), since any finite- 

dimensional generating subspace for C will be contained in a finite-dimensional 

subspace of the form U - V. 

If, further, B is a Hopf algebra with antipode S, then in the smash product 

A~CB, the action of B on A becomes "inner" in the sense of [13, Chapter 6], so 

that for any subspaces U C_ A and V C_ B we have 

(2.25) VU c_ V . U . SV. 

Hence if V is finite-dimensional and generates B as an algebra, and U is finite- 

dimensional and generates A as an algebra with B-action, then from the subspace 

U + V + S V  C A # B  we can get all the elements of A, as well as all the elements 

of B; thus, this finite-dimensional subspace generates A ~ B .  We find that  using 

this subspace we get elements of A essentially "as fast" as we get them within 

A using its structure of k-algebra with B-action. (Precisely, we can write them 
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using strings of elements of U + V + SV C_ A ~ B  whose length is bounded by 

a constant multiple of the lengths of strings needed to get them in A under the 

action of B.) We also obviously get elements of B as fast in A # B  as in B; this 

shows that  the left-hand-side of the equation of (iii) is _> the right-hand-side; (ii) 

gives the reverse inequality. | 

Example 2.26: Applying (iii) above to Example 2.18, we get associative algebras 

A # B  with length growth rates 6(2 nr/(~+~)) for r = 1 ,2 , . . . .  (Here the length 

growth rates of the algebras B = k[L] are polynomial, so when we apply (iii) 

above, these are absorbed by the much larger length growth rates of the algebras- 

with-B-action A.) The simplest case, where r = 1, so that  L is the unique 1- 

dimensional Lie algebra, turns out to give the algebra described in [16] and in 

[6, §2.7], the first known example of an algebra with less than exponential but 

greater than polynomial growth. 

In the development of that  example in [16], the algebra we are calling A-#:B was 

described as the universal enveloping algebra of a Lie algebra. In fact, one can so 

describe A # B  in the general case of the present example: Given A and B as in 

Example 2.18, the smash product A # B  is the universal enveloping algebra of the 

(trivial) extension of the Lie algebra L by the free L-module on one generator, 

which is the underlying L-module of k[L]. It is interesting that  though B is 

finitely presented as an associative algebra, and A as a commutative associative 

algebra with B-action, the finitely generated algebra A # B  is not finitely related 

as an associative algebra: infinitely many relations are required to make the 

k-algebra generators of A commute with one another. 

Example 2.27: Taking the A # B  of the preceding example for the "A" of Propo- 

sition 2.19, and k for the finite-dimensional bialgebra "B", and applying the 

last equation of that  Proposition, we find that ~depth (A#B) = G(2 (2~)~/(~+1)) = 

~(22~/(~+1) ) = 6(22~). Thus, though these algebras A # B  have less than maximal 

length growth rate, they have maximal depth growth rate. (Contrast Example 

1.11.) Note also that  by Theorem 2.8, 6depth(A,B) <_ 6(2n~+1), showing that  

the analog of Proposition 2.23 (in particular, part (iii)) does not hold for depth. 

Since we have noted that  A # B  is a universal enveloping algebra of a Lie 

algebra, and a universal enveloping algebra has a structure of bialgebra, we may 

look at the growth of algebras on which this bialgebra A # B  acts. Surprisingly, 

Theorem 2.8 tells us that  if C is a commutative k-algebra finitely generated under 
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an action of the bialgebra A # B ,  then ~depth(c, A # B )  is less than doubly expo- 

nential, since 6 length (AC~B) is less than exponential--even though Gdepth ( A ~ B )  

is doubly exponential. 

It would be interesting to characterize the class of biMgebras B such that  for 

every commutative algebra A on which B acts and which is finitely generated 

under this action, ~length(A, B) is less than exponential. Theorem 2.10 showed 

that  universal enveloping algebras of finite-dimensional Lie algebras belong to 

this class; comparison of that  Theorem with Example 2.9 shows that member- 

ship in this class is a function of the bialgebra structure of B, and not just its 

algebra structure. It is not hard to deduce from Proposition 2.19 that  all finite- 

dimensional bialgebras also belong to this class. A plausible conjecture is that  

this class consists of those finitely generated bialgebras B which (as coalgebras) 

have finite-dimensional coradical [13, Chapter 5]. 

3. Digress ions  a n d  r e m a r k s  

3.1. THE ARITHMETIC OF GROWTH RATES. In the above development, we have 

used various "obvious" facts about growth rates in an ad hoc way. A systematic 

development of this subject should begin by noting some general results on growth 

rates of sequences, and perhaps setting up some notation. 

Note that  one can operate on the set • of nondecreasing sequences of non- 

negative real numbers by composition on the right with nondecreasing functions 

from the positive integers to the positive integers, and on the left by composition 

with nondecreasing functions from the nonnegative reals to the nonnegative reals. 

Since our preordering on @ is based on looking at right composition with functions 

n ~-* rn, and right composition with one function commutes with left composition 

with any other function, that preordering is invariant under the above left com- 

position operations. Hence, if f is a nondecreasing function on nonnegative real 

numbers, the operation on growth rates ~(d(n)) ~ G(f(d(n))) is well-defined. 

More generally, a function f of r variables that is nondecreasing in each variable 

may be seen to induce a well-defined map from r-tuples of growth rates to growth 

rates. Thus, after setting up appropriate notation, one could write the displayed 

inequality in Theorem 2.8 more cleanly as ~depth(A, B) ~ 2 ~(n)Glength(B) 

On the other hand, for f a nondecreasing function from positive integers to 

positive integers, the definition 6(d(n)) ~-~ G(d(f(n))) does not generally give a 
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well-defined function; the necessary and sufficient condition on f for this to hold 

is that  

G(f(n)) = ~(rf(n))  

for all positive integers r, equivalently, for some r > 1. When this holds, we find 

that the map ~(d(n)) ~-, ~(d(f(n))) depends only on ~( f ) .  An example of a 

function satisfying the above displayed equation is f (n)  = 2~; consequently, one 

could set up notation under which the last equation of Proposition 2.19 would 

take the form ~depth(A) = ~length(A)o ~(2n). 

3.2. ON LENGTH AND DEPTH. The growth function of a nondecreasing se- 

quence d(n) is in fact determined by the "sample" of its values one gets by 

letting n run over the powers of 2 (or over any other sequence in which the ratio 

of successive terms is bounded above). Indeed, if d(2 "~) = e(2 m) for all m, then 

for any n, since there is a power of 2 between n and 2n, we find d(n) <_ e(2n) 

and e(n) <_ d(2n), hence G(d(n)) = ~(e(n)). It follows that for A an asso- 

ciative algebra (without bialgebra action) and U a finite-dimensional generat- 

ing subspace, the numbers dim(U aepth,~) = dim(U length,2~-l) (see Proposition 

2.19) determine G(dim(Ulength'n-1)) = ~length(A). This does not say, however, 

that ~depth(A) determines ~length(A); it turns out that in passing from the se- 

quence dim(U depth'n) = dim(U d~pth'D-1) to its growth r a t e  ~depth(A), one dis- 

cards too much information. Indeed, if dim(U l~ngth'n) grows like n d, we see that 

dim(U depth,n) grows like (2n) d = 2 nd, whose growth rate is the same for all d. 

(Roughly, one cannot recover ~length(A) from ~depth(A) because the logarithm 

function, unlike the exponential function, does not satisfy the displayed condition 

of 3.1.) 

This may lead one to wonder whether we have been too crude in defining 

~depth(A) as the growth rate of dim(Ud~pth'n). Could we have done better by 

using the common growth rate of all monotone functions d(n) satisfying d(2 m) = 

dim(Udepth,m)? 

From what we have just noted, this would have given an invariant for alge- 

bras without bialgebra action--which would have been identical with the length 

growth rate. But when we bring in a bialgebra action, we find that this pro- 

posed "sharpened" depth growth rate is not invariant under change of generating 

subspace for these bialgebras. (Cf., in Lemma 1.4, the difference between the 

first inclusion of (iv.b), and the right hand inclusion of (v).) Hence we cannot in 
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general refine our definition as suggested. 

3.3. GK AND BK DIMENSIONS. In [6], W. Borho and H. Kraft introduced the 

concept of the G e P f a n d - K i r i l l o v  d i m e n s i o n  (or G K  d imens ion )  of a finitely 

generated algebra A. The idea is to define a flmction which, when applied to an 

algebra which grows like a polynomial of degree r, will report the value of r. The 

invariant they constructed, in our language a function of ~length (A), is obtained 

from any finite-dimensional generating subspace U of A as 

lira sup~ (log~ dim(U length'n ) ), 

a nonnegative real number or + ~ .  

In retrospect, they made one tactical error: they used "lim sup", to make this 

value well-defined even in pathological cases, without making the name of the 

function reflect this somewhat arbitrary choice. (Recall that for a 

sequence d(n), l imsupnd(n ), the "limit superior" of the sequence, means 

l i m n ~ ( s u p m > n  d(m)).) This makes one tend to think of the above value as 

the actual limit, resulting in at least one incorrect claim, [6, Lemma 3.1(a)], 

where the authors assumed that this construction was additive when applied to 

a product of growth functions. (For counterexamples see [18], [12].) The present 

author suggested in [4, last paragraph] that  we call the above invariant the up- 

per Gel'land Kirillov dimension, the corresponding lira inf the lower Gel'land 

Kirillov dimension, and speak of A as having Gel'land Kirillov dimension only 

when these are equal. (That equality is established for some large classes of al- 

gebras in [18]. The distinction between upper and lower dimensions was in fact 

noted in [6, §2.12], but the upper dimension was simply called the "dimension" .) 

The authors of [6] also consider algebras whose dimensions grow like 2 nc 

(0 < c < 1). To extract from the growth function of such an algebra the 

constant c, they define the "superdimension", 

lira supn (log~ (in dim(Ulength'n))). 

For all algebras A, this gives a real number in [0,1], which we will here rename 

the B o r h o - K r a f t  or B K  d i m e n s i o n  of A. One can in fact prove that  for 

associative algebras (without bialgebra action) the sequence in question has a 

limit; however, in the nonassociative case, or when generalizing to algebras with 

bialgebra action, we should again distinguish "upper" and "lower" dimensions 

when this equality is not known. 
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As we noted in point 3.2, the dep th  growth rate introduced in this note is 

in some ways cruder than the length growth rate. In particular, it follows from 

Proposition 2.19 that all associative algebras with finite nonzero Gel'fand-Kirillov 

dimension have the single depth growth rate of exponential growth, and all as- 

sociative algebras with positive Borho-Kraft dimensions have the single depth 

growth rate of doubly exponential growth. 

However, Theorem 2.8 suggests that the depth growth rates of certain algebras 

wi th  bialgebra act ion will belong to classes from which one can extract nontrivial 

numerical invariants. If we list these invariants, in their "upper" and "lower" 

forms, and also the classical-type invariants based on the length growth rates, we 

get eight possible combinations: upper and lower, Gel'fand-Kirillov and Borho- 

Kraft, length and depth dimensions: 

lim sup dim(Ulengtl ..... v) 
liminf } { logn log~ in } ( in dim(Udept., .... v ) } "  

Fortunately, this is not quite the Babel of concepts that it appears. First, upper 

and lower dimensions differ only in pathological eases; when they agree, one does 

not have that  distinction to deal with. Secondly, the GK and BK dimensions are 

in something like what linguists call "complementary distribution": when one is 

relevant, the other is not, since if we say that an algebra has some finite (length 

or depth) GK dimension, its corresponding BK dimension is necessarily zero, 

while if an algebra has positive BK dimension, its GK dimension is necessarily 

infinite. So for any algebra A with B-action, we really have two phenomena, 

length growth rate and depth growth rate, to describe in GK or BK terms as 

may be appropriate. (There is one case where we have to mention both the GK 

and the BK dimension: when the former is +cx~ and the latter is 0, since in that  

case, neither determines the other.) 

One minor embellishment to the definitions of the above BK dimensions might 

be useful. If the value of one of these dimensions is c E [0, 1], Example 2.18 

suggests that  we should look at c / (1  - c) E [0, +oo], since in that example, this 

recovers the dimension r of L. I suggest calling c/ (1  - c) the r e n o r m a l i z e d  BK 

dimension. 

The reader interested in these dimension functions might now examine the 

various bounds we have obtained on growth rates in our results and examples, 

to see what statements about these dimensions they imply, and look for further 

results to complete our picture on how these dimensions can behave. 
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We remark that  these dimension functions do not, in general, determine the 

corresponding growth rates of an algebra. For example, algebras with growth 

rates G(n d) and G(n din n) both have GK dimension d. 

3.4. GROWTH OF NON-FINITELY-GENERATED ALGEBRAS. We have defined the 

above dimension functions in the case where the pair (A, B) is finitely generated 

(in the appropriate sense). In the non-finitely-generated case one can, as in 

the classical theory of Gel'fand-Kirillov dimension, define the value of each o f  

these dimensions to be the supremum of its values over all finitely generated 

substructures of (A, B). 

Note, however, that  we cannot make similar definitions for our growth rate 

functions ~length(A), ~length(d, B),  ~depth(A), ~depth(A, B),  since an infinite 

chain of growth rates usually does not have a least upper bound. For instance, 

there is no /east growth rate greater than the family of growth rates .~(n d) 
(d = 1, 2 , . . . ) .  Indeed, if f has greater growth rate than all these functions, 

then f([nl/2]) (where brackets denote the "greatest integer" function) also grows 

faster than all these functions, but grows slower than f .  If we want to extend 

the "growth rate" concept to infinitely generated algebras, the extended function 

should probably take values in some completion of the partially ordered set G(~) 

of growth rates of sequences. 

4. The operad viewpoint 

My original motivation for proving some of the results of Section 2 came out 

of a problem on how fast an algebra A with B-action could grow under some 

set of derived multilinear operations of its multiplication and the actions of the 

elements of B. I will say more about that problem in the next section; let us 

stop here and look at this concept of derived multilinear operation. 

In General algebra (a.k.a. "Universal algebra", but that name is out of favor 

with people in the field), if one is given a family of operations on a set (e.g., the 

operations comprising a structure of group), one can say, roughly, that  one con- 

structs derived operations (e.g., the binary and higher commutator operations, 

and the unary nth power operations) by repeatedly substituting various oper- 

ations for the variables in other operations, and using arbitrary arrangements 

of variables, with repetitions allowed. A family of operations on a set which is 

closed under these constructions is called a c lone  of operations ([2], [7]). 
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When one considers the Yelated situation of multilinear operations on a vector 

space, one can still substitute one such operation into another, and permute 

the variables, but one cannot repeat variables, since this generally results in 

operations that  are not multilinear. In fact, whenever the base field is infinite, 

one can show that  the only derived operations of a set of multilinear operations 

that  are themselves multilinear are those obtained as in the following definition. 

(Over a finite field there are exceptions; in particular, the qth-power operation 

on an associative commutative k-algebra, where k is the field of q elements, is 

linear.) 

Definition 4.1: Let A be a k-vector-space. A family B of multilinear maps 

y : A n(y) -~ A (where each n(y) is a nonnegative integer, called the a r i t y  of y, 

and where a z e r o a r y  multilineax operation is understood to specify an element of 

A) will be called an o p e r a d  of multilinear maps on A if the following conditions 

are satisfied: 

(i) The unary identity map A --* A belongs to B. 

(ii) If y E B, n(y) = r, and Y l , . . . , Y r  E B, then the n(yl)  + . . .  + n(yr)-ary 

composite operation 

An(yl)+...+n(y~) (~1 ..... ~ )  A r ~ A 

belongs to B. (Note that since some of the Yi may be zeroary, this composite 

may have arity less than that  of y.) 

(iii) If y e B, and rr is a permutation of {1, . . .  ,n(y)}, then the composite map 

A n(y) -~ A n(y) ~ A also belongs to B. 

(iv) For each n, the set of n-cry operations in B is closed under addition and 

under multiplication by elements of k. 

The relation between the above definition and the definition of an operad given 

in [9, (1.2.1)] is like that between the definitions of a group of permutations of a 

set, and of an abstract group. The abstract concept of operad is important for 

deeper study, but  for our present purposes, the above "concrete" version suffices. 

Note that  in view of (iv), it would be most natural to consider an operad B of 

multilinear maps on A not as a set, but as a family of vector spaces, B0, B1,. •. ,  

indexed by arity. Again, this is done in [9]; but to avoid setting up a language 

for graded vector spaces, we will here just speak of B as a set. Note, however, 

that  in a graded-vector-space context, the analog, for an operad, of the (generally 
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finite-dimensional) subspaces V C_ B of Sections 1 and 2 should be an appropriate 

graded subspace of B. But since we are not speaking of graded vectors spaces, 

we will break with Sections 1 and 2, and take our V's to be (generally finite) 

subsets of B, as in the next definition. In that  definition, we will use the analog 

of the notational convention (1.2), namely, given a multilinear operation y on a 

vector space A, and subspaces Ux, . . . ,  U~(u) of A, we define 

y (U1, . . . ,  Un(y)) = spank{y(x l , . . . ,  xn(u)) I xi e U~} C_ A. 

Definition 4.2: Let A be a k-vector-space, and B an operad of multilinear maps 

on A. Then given any subspace U C A, and any subset V C_ B containing the 

identity map of A, let us define k-subspaces U length'n'V C A and U depth,n,V 

A (n = 1, 2 , . . .  ) recursively, taking 

U length'l'V ~ U, 

U depth ' l 'v  ~ U, 

and for n > 1, 

ulength'n'V ~- Y]yeV, m(i)<n, Em(i)<n Y( vlength'm(1)'V . . . .  , ulength,m(n(y)),V ), 

udepth'n'V = ~ y e V  y (Udepth 'n - l 'V ,  " ' '  , udep th 'n - l 'V )  (n(y) arguments). 

Most of Lemma 1.4 goes over essentially unchanged to this context. An 

adjustment is needed in the rightmost term of point (i) thereof: we have to 

assume there that  the arities of elements of V are bounded by some integer b, 

and replace 2 ~-1 by b n-1. Point (v) needs more adjustment: V ~ C_ Vleng th'~ 

makes sense and is the right hypothesis only in the case where all our operations 

are unary. In general, distinct hypotheses are appropriate for getting the indi- 

cated conclusions for ~|ength and ~depth, and we leave it to the interested reader 

to work these out; but it is easily verified that if V ~ is a finite subset of the operad 

generated by V, then there exists some integer r such that both conclusions hold, 

and this gives us the analog of Corollary 1.5. 

Thus, if B is a finitely generated operad of multilinear maps on a vector space 

A, and A is finitely generated under the action of these maps, we again get 

two growth rates which are invariants of the pair (A, B), which we will denote 

6~ength(A, B) and 6depth(A, B). As in Lemma 1.7, we find that  the first of these 
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is at most exponential, and the second at most doubly exponential. (One again 

proves this by counting expressions for "monomials" in U len~th''~'w and U d~pth'~'V, 

and verifying that  the lengths of such expressions (:an be bounded by linear 

and exponential functions of n, respectively. The reader thinking through this 

verification should note that it is most easily done by a direct induction; the 

alternative of looking for syntactic characterizations of such expressions, and 

then estimating their lengths, seems more difficult.) 

These new growth functions are not merely analogs of our old ones, but sub- 

sume them as special cases: 

PROPOSITION 4.3: Let A be a (not necessarily associative) k-algebra and B an 

associative unital k-algebra, and assume a B-module structure is given on A, 

compatible with its k-vector-space structure. 

Let 7t denote the underlying vector space of A, and [~ the operad of multilinear 

operations on A generated by the bilinear multiplication of A, together with the 

linear operations on A given by the actions of the elements of B.  Then 

(i) A subspace U C A generates A as a k-algebra with B-module structure i f  

and only i f  it generates 7t as a k-vector-space with action of the operad B. 

(ii) I f  a subset V C_ B generates B as a unital k-algebra, then its image in the 

set of linear elements of B,  together with the bilinear element coming from 

the multiplication of A, generate B as an operad. (The converse can fail i f  

A is not a faithful B-module.) 

(iii) I f  A and B are each finitely generated in the above senses, so that, by the 

above observations, fI and B are as well, then 

~length (A, B) = ~length (A, B) and ~depth (A, B) = ~depth (A, B). 

Thus, the growth rates 6length(A, B) and 6 d~pth (A, B) are invariants of A not 

only as a k-algebra with B-module structure, but as a vector space with an 

operad of k-multilinear maps. | 

5. T h e  source  of  these  ques t ions :  an  elusive cha in  cond i t i on  

I will sketch below the considerations that led me to these growth-rate questions. 

Detailed formulations and arguments are given in [5, §65], except for the actual 

growth-rate computations; on that point, it is the preceding sections of this paper 

which have developed in detail some relevant results, of which only one was briefly 

sketched in [5]. 
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If F is a free semigroup, it is known that a finitely generated subsemigroup 

S C_ F need not be finitely related. (For example, for S free on {x, y}, the sub- 

semigroup generated by {x, xy, y2, yx) is not.) Nevertheless, it can be proved 

that in this situation, if R is the set of all relations holding on some finite gen- 

erating set for S, there is always a finite subset R0 C_ R which "implies" all 

the rest, in the sense that whenever the set of relations R0 holds in a family of 

elements of a free semigroup, the whole set of relations R holds there. This can 

be formalized as saying that  any finitely generated subsemigroup of a free semi- 

group is finitely related within the quasivariety generated by all free semigroups; 

a slightly stronger version of this result is that in any free semigroup on finitely 

many generators, the class of congruences which are intersections of congruences 

induced by homomorphisms into free semigroups has ascending chain condition. 

The t ruth of this last assertion is not hard to deduce from three observations: 

(1) A free semigroup on finitely many generators can be embedded in the mul- 

tiplicative semigroup of 2 × 2 matrices over a commutative ring. (For example, 

( 1  2 ) a n d y =  (12 01)over Z generate a free semi- the two matrices x = 0 1 

group.) (2) Any semigroup relation satisfied by a family of matrices is equivalent 

to a family of polynomial equations in their entries. (3) A polynomial ring in 

finitely many indeterminates over Z is Noetherian. (See [5, §65] for details, and 

references to related literature.) 

Now from the example of a finitely generated subsemigroup of a free semigroup 

that  is not finitely related, one gets, on forming semigroup algebras, an example 

of a finitely generated but non-finitely-related subalgebra of a free associative 

algebra. It is natural to ask whether the analog of the above positive result 

also holds for associative algebras; i.e., whether every free associative algebra 

on finitely many generators has ascending chain condition on ideals which are 

intersections of kernels of homomorphisms into free associative algebras. 

Might such a result in fact be proved in a similar way, by embedding a free 

associative algebra in some associative algebra whose elements are determined 

by n-tuples (for some fixed n) of elements of an algebraic structure of another 

sort, such that  finitely generated objects of that latter sort have ascending chain 

condition on congruences? (In [5], a precise formulation is given of the type of 

embedding in question.) 

The first difficulty is to find the "other sort of algebra". Results to the effect 

that  the finitely generated algebras in a variety have ascending chain condition 
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on congruences are not very numerous. Aside from the result about commutative 

rings, the one result I am aware of that concerns a variety with a rich enough 

structure to make the existence of the desired embedding plausible is for the 

variety of commutative differential algebras, that is, commutative associative k- 

algebras given with a single derivation d, equivalently, with a bialgebra action of 

k[L], where L is the 1-dimensional Lie algebra. If the field k has characteristic 0, 

the finitely generated algebras in this variety are known to have ascending chain 

condition on semiprime (= radical) d-invariant ideals ([14, Theorem in §I.12], [10, 

Theorem 7.1]), and this would be enough to prove our desired result on associative 

algebras, if we could get an appropriate representation of free associative algebras 

using commutative differential algebras. 

However, my attempts to construct such representations failed, leading me to 

try to prove that  no such representations existed. Assuming one had such a 

construction in which the k-vector-space structure of the constructed associative 

algebra F(A, d) was inherited from that of the given differential k-algebra (A, d), 

the multiplication of F(A, d) would have to be built out of derived multilinear 

operations of the multiplication of A and the derivation d. Assuming k not a finite 

field, these derived multilinear operations would lie in the operad generated by the 

multiplication and the derivation. But comparing the exponential length-growth- 

rate of a free associative algebra, noted in Example 1.8 above, with the lower 

length-growth-rates of associative commutative algebras with action of a finite- 

dimensional Lie algebra, obtained in Theorem 2.10, and applying Proposition 

4.3, one can conclude that such an embedding is not possible. 

This argument in fact shows that  one cannot get such embeddings even using 

generalized differential algebras, having a fixed finite-dimensional Lie algebra L of 

derivations. Using the depth growth rate and the bound of Theorem 2.8, instead 

of the length growth rate and Theorem 2.10, one can exclude a still larger class 

of possible representing varieties, including commutative algebras with action of 

any group of less than exponential growth. (It was the search for such a wider 

nonrepresentability result, which seemed empirically true, that  led me to the 

concept of the depth growth rate.) 

Embeddings of free associative algebras using commutative algebras A with 

actions of bialgebras of exponential growth, such as that of Example 1.9, seem 

not to be excluded by growth-rate considerations. Whether they exist, or are 

impossible for other reasons, I don't  know. If they do exist, then to use them, 
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we would have to prove a chain condition for appropriate ideals of algebras with 

such action; but this seems unlikely to hold in most cases. In any case, the reader 

is welcome to t ry  his or her hand at such approaches. 

I will mention one other method of attack on the above question that  occurred 

to me--also unsuccessful. A free associative algebra is known to be embeddable 

in a division algebra (cfl [8, p. 487]), so the kernel of a homomorphism into a free 

associative algebra is the kernel of a homomorphism into a division algebra. Is 

it possible that  finitely generated free associative algebras (and hence all finitely 

generated associative algebras) have ascending chain condition on intersections 

of kernels of maps into division algebras? 

Alas, no. The free group on two generators x and y has an infinite ascend- 

ing chain of normal subgroups whose factor-groups are orderable groups ([3]). 

The group algebras of these factor-groups are therefore embeddable in division 

algebras ([8, Cot. 8.7.6]), and this yields an infinite ascending chain of ideals of 

the group algebra k < x, x -1, y, y-1 > which are kernels of homomorphisms into 

division algebras. 
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